3.595 \(\int \frac{(a+b \sec (c+d x))^3}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=158 \[ \frac{2 b \left (9 a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a \left (a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 b^2 \sin (c+d x) \sqrt{\sec (c+d x)} (a+b \sec (c+d x))}{3 d}+\frac{16 a b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d} \]

[Out]

(2*a*(a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*b*(9*a^2 + b^2)*Sqr
t[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (16*a*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x
])/(3*d) + (2*b^2*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.188966, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3842, 4047, 3771, 2641, 4046, 2639} \[ \frac{2 b \left (9 a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a \left (a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 b^2 \sin (c+d x) \sqrt{\sec (c+d x)} (a+b \sec (c+d x))}{3 d}+\frac{16 a b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^3/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*b*(9*a^2 + b^2)*Sqr
t[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (16*a*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x
])/(3*d) + (2*b^2*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])*Sin[c + d*x])/(3*d)

Rule 3842

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*(m + n - 1)), x] + Dist[1/(d*(m + n - 1)), In
t[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2) +
3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f
, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] &&  !Integ
erQ[m])

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^3}{\sqrt{\sec (c+d x)}} \, dx &=\frac{2 b^2 \sqrt{\sec (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\frac{2}{3} \int \frac{\frac{1}{2} a \left (3 a^2-b^2\right )+\frac{1}{2} b \left (9 a^2+b^2\right ) \sec (c+d x)+4 a b^2 \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 b^2 \sqrt{\sec (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\frac{2}{3} \int \frac{\frac{1}{2} a \left (3 a^2-b^2\right )+4 a b^2 \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (b \left (9 a^2+b^2\right )\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{16 a b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 b^2 \sqrt{\sec (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\left (a \left (a^2-3 b^2\right )\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (b \left (9 a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 b \left (9 a^2+b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{16 a b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 b^2 \sqrt{\sec (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\left (a \left (a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 a \left (a^2-3 b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 b \left (9 a^2+b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{16 a b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 b^2 \sqrt{\sec (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.463404, size = 106, normalized size = 0.67 \[ \frac{\sec ^{\frac{3}{2}}(c+d x) \left (b \left (2 \left (9 a^2+b^2\right ) \cos ^{\frac{3}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+2 b \sin (c+d x) (9 a \cos (c+d x)+b)\right )+6 a \left (a^2-3 b^2\right ) \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^3/Sqrt[Sec[c + d*x]],x]

[Out]

(Sec[c + d*x]^(3/2)*(6*a*(a^2 - 3*b^2)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + b*(2*(9*a^2 + b^2)*Cos[c
 + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 2*b*(b + 9*a*Cos[c + d*x])*Sin[c + d*x])))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 3.526, size = 631, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^3/sec(d*x+c)^(1/2),x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(18*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x
+1/2*c),2^(1/2))*a^2*b*sin(1/2*d*x+1/2*c)^2+2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^3*sin(1/2*d*x+1/2*c)^2-6*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3*sin(1/2*d*x+1/2*c)^2+18*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2*sin(1/2*d*x+1/2*c)^2-36*a*b^2*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-9*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))*b^3+3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2
*d*x+1/2*c),2^(1/2))*a^3-9*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),2^(1/2))*a*b^2+18*a*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+2*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1
/2*c)^2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**3/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)